
ARDF Transmitter Controller

Firmware Description Manual

Version 8x.0

Table of Contents
ARDF Transmitter Controller...1
Introduction...3
Fox ID and Callsign ID...4

Code generator..4
Utility program – text2code..4

EEPROM loading instructions..5
Loading with hexfile...5
Direct entry into interactive mode..5

Controller Program...7
Program loading instructions...7

Appendix 1 – Source Code Listing...10
Appendix 2 – setup arduino environment...15
Appendix 3 – EEPROM code byte preparation example...16
Appendix 4 – Transmitter schematic..17

ARDFTxControllerSoftwe.odt Page 2 of 17 2016-04-05

Introduction

The microcontroller used in the minifox transmitter (described in a separate document, schematic in
Appendix 4) has grown to its present form through many stages. Initially, the controller was implemented
with an ATtiny13 which had limited pin-programming to control the ID that sent continuously. Several
investigations followed to try to use the internal oscillator of various of the Atmel processors for more
complex timing control, ending with the conclusion that an external crystal oscillator was required for
adequate timing accuracy. The resulting implementation described here uses the ATtiny85 processor,
programmed as an arduino platform. Those interested in more detail of the development processes can
find it at the codppm link under www.islandnet.com/~jyoung/arduinopgm.htm

Although the controller was developed specifically for the minifox sprint and fox-or operations, it is also
suitable for use in a standard high-power fox or beacon.

The peculiar name of the program to be described, codppmx8inv.ino, arose over the course of developing
it. Approximately, it “means” code, pulse per minute, crystal, version 8, invertable outputs, and .ino means
it's an arduino sketch.

The goals/requirements for the implementation, now realized in the software version codppmx8inv.ino,
are:

• low-power, low-voltage operation – two AA cells power supply.

• ARDF Sprint competition modes (12-second/48-second), Beacon (ARDF Fox-Or) mode, ARDF
Standard (one-minute/four-minute) mode

• Accurate timing: keep Sprint modes' starting time on an even minute stable to one or two seconds
over 6 to 8 hours operating time

• Simple operating mode selection among Sprint slow, Sprint fast, Beacon, Standard

• Minimize timing sequence interruption by sending required callsign ID. ID is sent at start, every
30 minutes thereafter.

• Fox ID and callsign stored in EEPROM. Flash does not need to be changed.

• Indicator LED to show operation active for only a few seconds after power-on or reset.

• Sprint timing for foxes 1 – 5 automatically calculated so that every fox is started the same way—
release reset on an even minute.

ARDFTxControllerSoftwe.odt Page 3 of 17 2016-04-05

http://www.islandnet.com/~jyoung/arduinopgm.htm

Fox ID and Callsign ID
The controller generates Morse code for on/off keying of the transmitter and LED via two output pins (6
and 5, respectively). The minifox transmitter in appendix 4 has the controller's pins configured so that the
pin 6 Tx keying is active high, and the pin 5 output is open-drain, active low.

Conforming to IARU ARDF rules, the fox ID is one of MOE, MOI, MOS, MOH, MO5 (two dashes, three
dashes, one to 5 dots, indicating fox 1 to 5 respectively) sent for the ON time of the mode. For the Sprint
modes, the ON time is 12 seconds and the transmitter is silent for 48 seconds. For the Standard mode, the
ON time is one minute, the OFF time is 4 minutes. The code speed is approximately 10 words per minute,
except the Sprint Fast mode sends at 14 words per minute.

The callsign ID is inserted into the first ON time after release of reset and it is sent at a high speed to
minimize the disruption of the Sprint timing. The disruption will depend on the length of the callsign, but
the worst case of the Slow Sprint's 12 second interval should still have at least one fox ID following the
callsign. The callsign insertion is then repeated after 30 minutes.

All of the Morse code characters to be sent are stored one character per byte in the first few locations of
the ATtiny85 EEPROM. The storage format is described below. These codes do not typically need to be
changed after the initial decision is made about which fox number is to be sent, and who the 'control
operator' is. However, if they do need to be changed, it is fairly easy to program only the eeprom with any
of several Atmel-processor memory programming devices.

Code generator

The processor code generator loops through a sequence of ON/OFF intervals determined by each byte of
code characters. First, the byte to be sent is scanned from the left to locate a 1 bit which is discarded.
Then the remaining bits determine if the Tx ON time is a dot (bit = 0) or a dash (bit = 1). Thus, the code
byte stored in EEPROM location 0 for a Morse M is 00000111. The next byte in location 1 for a Morse O
is 00001111. The third character corresponds to the fox ID number by the number of dots. Fox 1, MOE
will be encoded in EEPROM location 2 as 00000010. Similarly, MOI is 00000100, MOS is 00001000,
MOH is 00010000, and MO5 is 00100000. Spaces are stored as a byte of zeros, the end of the callsign is
indicated by a byte 0xFF which is the state of eeprom before it's been programmed.

A suggestion for a 'by hand' design of the necessary code bytes would be to use a gridded notepad, write
the characters to be encoded down the page, translate the characters to Morse dots (0) and dashes (1),
right-justify the pattern, add the leftmost 1 bit, and finally translate the binary to hexadecimal (which the
memory programming device likely wants). A scan of such a procedure is shown in Appendix 3.

Utility program – text2code

Included in the codppm package is an arduino program text2code.ino that might be helpful for preparing
the codebytes for the EEPROM. This program accepts a text string on the serial input and outputs the
corresponding string of codebytes. It also produces an intel-hex version of the codebytes which can then
be copied and pasted into a text file a programming device can use. This program is probably only useful
if several processors need to be programmed with different callsigns, and an arduino board and
programming IDE is readily available. A screenshot of the text2code output is shown below the 'manual'
encoding example in Apendix 3.

ARDFTxControllerSoftwe.odt Page 4 of 17 2016-04-05

EEPROM loading instructions

The detailed procedure to follow will depend on the machinery available: the programer device, the device
control program, and possibly operating system setup. The instructions shown here will assume that the
programmer is one of the usbtiny devices (for example, Sparkfun's “AVR Pocket Programmer”, or “Tiny
Programmer”), and that the controlling program is the open-source, non-gnu.org, avrdude which is
available for Windoze, OSX, and Linux. It's hoped that these instructions are general enough that you can
translate them to use whatever device/program you have available.

Loading with hexfile

Assume the code bytes shown in the examples of appendix 3 is in a hexfile called ees.hex. The avrdude
command to load this hexfile into the eeprom is:

avrdude -c usbtiny -p attiny85 -U eeprom:w:ees.hex

The contents of the hex file ees.hex look like this:

:10000000070F08000C020011023818120D3238FFD9
:00000001FF

The parameters on the avrdude command are:

-c usbtiny - specifies the programmer is a usbtiny type plugged into some usb port.

-p attiny85 - specifies that the device being programmed is an ATtiny85

-U eeprom:w:ees.hex - specifies a memory access command, memory type is eeprom, the access
is a write operation (w), and the data to be written is in file ees.hex. Avrdude discovers by reading the file
that it is in intel hex format.

Direct entry into interactive mode

avrdude has an interactive mode of operation where you type individual programming commands at the
command prompt, and avrdude carries them out and echos back the command just completed (or produces
an error message if there is some problem). Using this mode is convenient for making small changes, for
example, if only the fox ID is to be modified then only one location in the eeprom needs to be modified.
Also, using the interactive mode means that only avrdude and the hardware programmer is needed to
program the minifox—no other software is required.

The following example terminal session shows the eeprom being changed to alter the fox ID alone from
MOE to MOS (in this example, the text the user enters has been coloured blue and made bold in case of
black printing of this document, all the rest of the text shown comes from the operating system or from
avrdude):

ARDFTxControllerSoftwe.odt Page 5 of 17 2016-04-05

joe@newmint:~/Desktop/minifox85$ avrdude -c usbtiny -p attiny85 -t

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.01s

avrdude: Device signature = 0x1e930b
avrdude> dump eeprom 0 0x40
>>> dump eeprom 0 0x40
0000 07 0f 02 00 0c 02 00 11 02 38 18 12 0d 32 38 ff |....8.. 28.|
0010 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude> write eeprom 0x02 0x08
>>> write eeprom 0x02 0x08

avrdude> dump eeprom 0 0x40
>>> dump eeprom 0 0x40
0000 07 0f 08 00 0c 02 00 11 02 38 18 12 0d 32 38 ff |....8.. 28.|
0010 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>

Note in the example above that the only eeprom location that has changed between the two 'dump'
commands is location 0x02.

The 'write' command can be extended to several bytes, so you could enter all of required code bytes into a
new processor's eeprom in one command, just add the bytes to follow after the address (first byte after the
write).

As a shorter, multi-byte example, suppose the eeprom contents above are to be changed so that the
callsign ID is changed from VE7BFK/7 to VE7AJT/7—that is, only 3 bytes need to change. The following
avrdude write and dump shows this operation:

avrdude> write eeprom 0x0a 0x05 0x17 0x03
>>> write eeprom 0x0a 0x05 0x17 0x03

avrdude> dump eeprom 0 0x40
>>> dump eeprom 0 0x40
0000 07 0f 08 00 0c 02 00 11 02 38 05 17 03 32 38 ff |....8...28.|
0010 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0020 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|
0030 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff |................|

avrdude>

Interactive mode is exited by entering the command 'quit'

ARDFTxControllerSoftwe.odt Page 6 of 17 2016-04-05

Controller Program

The controller program (source code is in file codppmx8inv.ino, see Appendix 1) is created as an arduino
sketch. Recent versions of the arduino IDE (integrated development environment) (since 1.0.5) now allow
using the very flexible, open-source, gcc toolchain for compiling the programs for a considerable variety
of target processors, including the ATtiny85. Consequently, if one wishes to modify the program provided
in the minifox transmitter, the free, multi-platform, arduino IDE can be used. The program codppmx8inv
has a couple of configuration options that might be of interest, even without changing anything else—the
interval between callsign transmissions, the polaritiy of the LED output signal, and the polarity of the
transmitter output signal can be changed by setting #define values located near the top of the program.

On the other hand, if it is only desired to use the existing program as-is, but to load it into an as-shipped
ATtiny85 (say for replicating the minifox, or using the controller in a high-power standard fox), the
codppm package includes the compiled program in the form of an intel-hex file so that only the
programmer and its support program are needed to reproduce the controller. Instructions for doing this are
in the following section. There are two versions of the program included in codppm package,
codppmx8.hex and codppmx8inv.hex. The first corresponds to the original minifox transmitter where both
outputs were open-drain. The second is for the current version as shown in the schematic in appendix 4.

A brief outline of the structure of the controller program:
– The top section of the source defines a variety of variables and functions. Interrupt service function

for the crucial one-second timer using processor timer 1 and the timer setup function are defined
here. The 4 lines beginning #define TPOLARITY_POS define how the pin polarity is
controlled for the transmitter and the LED. To change pin polarity, add/remove comment // to leave
the desired definitions active. The #define CALL_INTERVAL 1800 sets the interval, in
seconds, between callsign insertions

– The setup() function runs once after power-on or reset. The fox number, the operating mode, and
code speed is determined in setup().

– The loop() function runs repeatedly at the full speed of the processor. Timing of all operations is
determined by testing timing variables against values generated by interrupt service routines. The
main mode intervals test against the seconds elapsed measured by timer 1, faster times (code
elements) test against the milliseconds elapsed measured by the arduino timer, millis().

– Several 'support' functions follow loop(), collectively they generate the Morse code.

Program loading instructions

The program is loaded into the processor flash memory using avrdude in nearly the same way as described
for loading the eeprom from a hex file, simply specifying the flash memory type instead of eeprom and
the program hex file:

avrdude -c usbtiny -p attiny85 -U flash:w:codppmx8inv.hex

avrdude will respond with several messages describing the process of programming and then verifying the
written program.

A few cautions to keep in mind: this command will work on an as-shipped processor which will use the
processor's internal oscillator; the program loading will be preceded by a chip-erase which would also

ARDFTxControllerSoftwe.odt Page 7 of 17 2016-04-05

clean out the eeprom; when you program the fuses to use the 1.8432 MHz crystal, the crystal must be
present for the communication with avrdude to work; the hfuse can be programmed to cause eeprom to be
saved when a chip-erase is performed.

The following terminal session example shows how to load all memories of a new processor with a single
avrdude command line. There are four memory commands, for the flash, the eeprom, and the two fuses.
The command assumes that the files codppmx8inv.hex, and ees.hex are in the current directory. The long
command line is actually all typed on one line, although it's shown below wrapped onto a second line.

Note that the fuse programming commands have a qualifier, :m, appended which means that the data for
the command is in the command, not in a file.

joe@newmint:~/Desktop/minifox85$ avrdude -c usbtiny -p attiny85 -U
flash:w:codppmx8inv.hex -U eeprom:w:ees.hex -U hfuse:w:0xdf:m -U lfuse:w:0xeb:m

avrdude: AVR device initialized and ready to accept instructions

Reading | ## | 100% 0.01s

avrdude: Device signature = 0x1e930b
avrdude: NOTE: "flash" memory has been specified, an erase cycle will be performed
 To disable this feature, specify the -D option.
avrdude: erasing chip
avrdude: reading input file "codppmx8inv.hex"
avrdude: input file codppmx8inv.hex auto detected as Intel Hex
avrdude: writing flash (2616 bytes):

Writing | ## | 100% 6.52s

avrdude: 2616 bytes of flash written
avrdude: verifying flash memory against codppmx8inv.hex:
avrdude: load data flash data from input file codppmx8inv.hex:
avrdude: input file codppmx8inv.hex auto detected as Intel Hex
avrdude: input file codppmx8inv.hex contains 2616 bytes
avrdude: reading on-chip flash data:

Reading | ## | 100% 7.34s

avrdude: verifying ...
avrdude: 2616 bytes of flash verified
avrdude: reading input file "ees.hex"
avrdude: input file ees.hex auto detected as Intel Hex
avrdude: writing eeprom (16 bytes):

Writing | | 0% 0.00s
avrdude: error: usbtiny_send: error sending control message: Connection timed out
(expected 128, got -110)
Writing | ## | 100% 1.36s

avrdude: 16 bytes of eeprom written
avrdude: verifying eeprom memory against ees.hex:
avrdude: load data eeprom data from input file ees.hex:
avrdude: input file ees.hex auto detected as Intel Hex
avrdude: input file ees.hex contains 16 bytes
avrdude: reading on-chip eeprom data:

ARDFTxControllerSoftwe.odt Page 8 of 17 2016-04-05

Reading | ## | 100% 0.71s

avrdude: verifying ...
avrdude: 16 bytes of eeprom verified
avrdude: reading input file "0xdf"
avrdude: writing hfuse (1 bytes):

Writing | ## | 100% 0.00s

avrdude: 1 bytes of hfuse written
avrdude: verifying hfuse memory against 0xdf:
avrdude: load data hfuse data from input file 0xdf:
avrdude: input file 0xdf contains 1 bytes
avrdude: reading on-chip hfuse data:

Reading | ## | 100% 0.00s

avrdude: verifying ...
avrdude: 1 bytes of hfuse verified
avrdude: reading input file "0xeb"
avrdude: writing lfuse (1 bytes):

Writing | ## | 100% 0.00s

avrdude: 1 bytes of lfuse written
avrdude: verifying lfuse memory against 0xeb:
avrdude: load data lfuse data from input file 0xeb:
avrdude: input file 0xeb contains 1 bytes
avrdude: reading on-chip lfuse data:

Reading | ## | 100% 0.00s

avrdude: verifying ...
avrdude: 1 bytes of lfuse verified

avrdude: safemode: Fuses OK (H:FF, E:DF, L:EB)

avrdude done. Thank you.

joe@newmint:~/Desktop/minifox85$

ARDFTxControllerSoftwe.odt Page 9 of 17 2016-04-05

Appendix 1 – Source Code Listing

ARDFTxControllerSoftwe.odt Page 10 of 17 2016-04-05

ARDFTxControllerSoftwe.odt Page 11 of 17 2016-04-05

ARDFTxControllerSoftwe.odt Page 12 of 17 2016-04-05

ARDFTxControllerSoftwe.odt Page 13 of 17 2016-04-05

ARDFTxControllerSoftwe.odt Page 14 of 17 2016-04-05

Appendix 2 – setup arduino environment

The basic arduino setup is best done by following the instructions in the 'getting started' tutorial on the
www.arduino.cc web site. Then, adding the ability to use the ATtiny85 is handled from the arduino > tools
> board > board manager menu. There will be an entry for ATtiny processors, just select 'install' to add the
needed core files.

There is also an excellent tutorial on the Sparkfun website associated with their tiny programmer product:

https://learn.sparkfun.com/tutorials/tiny-avr-programmer-hookup-guide

An aspect of the supplied ATtiny85 core not covered in these guides concerns the minifox controller using
a 1.8435 MHz crystal. None of the supplied variations includes provision for this external frequency.
Consequently, you cannot directly use the 'burn bootloader' feature of the arduino IDE to program the
processor's fuses (the fuses are all that's 'burned' with the 'burn bootloader' command on the ATtiny85).

The arduino IDE also does not let you pre-load the eeprom. Although, in principle, you could write an
arduino program using the EEPROM library functions to run first to program the eeprom this would
require the hfuse value to have already been changed. Otherwise, uploading the controller program to the
flash will erase the eeprom during the chip-erase step!

Both of these problems can be corrected to some extent by making a modification to a configuration file
called boards.txt. The following group of lines needs to be inserted into the boards.txt file found in a
configuration file in a folder (possibly hidden) called
.arduino15/packages/attiny/hardware/avr/1.0.1/boards.txt (this is the linux path to the boards.txt file—
other systems might be different). It is reasonable to place this group after the existing group for a 1.0
MHz external clock (first line).

attiny.menu.clock.external2=1.8 MHz (external)

attiny.menu.clock.external2.bootloader.low_fuses=0xeb
attiny.menu.clock.external2.bootloader.high_fuses=0xd7
attiny.menu.clock.external2.bootloader.extended_fuses=0xff
attiny.menu.clock.external2.build.f_cpu=1843200L

Note that this will only permit the 'burn bootloader' operation to write the proper fuses. The actual clock
frequency will not be correct at 1.8432 MHz because the arduino IDE determines the cpu clock frequency
in megahertz from this parameter specification by doing an integer divide of 1843200/1000000 which
results in 1. This fact is accounted for in codppmx8inv by scaling desired millisecond times by 1.8432
(approximately).

Modifying this file is 'dangerous' in the sense that if a later version of the attiny cores is uploaded at some
future time, the file will be overwritten and the change would disappear. As an alternative course, if the
attiny cores package includes a 1.0 MHz (external) clock specification entry (not all versions of the cores
pacakage seem to have this option), then that could be used without modifying the boards.txt file as the
program already assumes that the clock rate calculated by the IDE will be 1 MHz, when it is actually
1.8432 MHz.

ARDFTxControllerSoftwe.odt Page 15 of 17 2016-04-05

https://learn.sparkfun.com/tutorials/tiny-avr-programmer-hookup-guide
http://www.arduino.cc/

Appendix 3 – EEPROM code byte preparation example

ARDFTxControllerSoftwe.odt Page 16 of 17 2016-04-05

Appendix 4 – Transmitter schematic

ARDFTxControllerSoftwe.odt Page 17 of 17 2016-04-05

	ARDF Transmitter Controller
	Introduction
	Fox ID and Callsign ID
	Code generator
	EEPROM loading instructions

	Controller Program
	Program loading instructions

	Appendix 1 – Source Code Listing
	Appendix 2 – setup arduino environment
	Appendix 3 – EEPROM code byte preparation example
	Appendix 4 – Transmitter schematic

